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Alexander Andreevich Borisenko was born on May 24, 1946 in Lebe-
din town (Sumy region, Ukraine). In 1969 he graduated from the Mechanics
and Mathematics Department of Kharkiv State University and enrolled in the
geometry graduate school. In 1973 he defended his PhD thesis, �The structure
of surfaces with degenerate spherical image� (Kharkiv State University), and in
1983 he defended his habilitation thesis �Multi-dimensional surfaces of nonposi-
tive extrinsic curvature� (Moscow State University). In 1995 he was elected as a
corresponding member of the NAS of Ukraine. In 2002 A. Borisenko was awarded
the Krylov Prize of the National Academy of Sciences of Ukraine, followed by
the State Prize of Ukraine in the �eld of science and technology in 2005 and
A.V. Pogorelov Prize of National Academy of Sciences of Ukraine in 2010.

Since 1973 he worked at the Department of Geometry of the Kharkiv State
University, and was the Department Chair from 1980 by 2012. During this period
the Kharkiv geometrical school got a new impulse in development of the geometry
of multidimensional submanifolds in Euclidean, Riemannian, pseudo-Riemannian,
Finsler spaces and spaces with additional structures (complex, Sasakian, �ber
etc.). His research interests are very much �multivariate�. To prove this it
is enough to look at the variety of his post-graduate students and collabora-
tors: D. Bolotov (geometry and topology of foliations), K. Drach (isoperimetric
inequalities, comparison theorems, the optimal control), N. Farafonova (geom-
etry of Grassmann bundles), V. Lisitsa (geometry of helical submanifolds), O.
Lykova (geometry of the Grassmann image of complex submanifolds), V. Miquel
(curvature �ows, geometry of convex hypersurfaces in Hadamard manifolds), Y.
Nikolayevsky (geometry of the Grassmann image of submanifolds), S. Okrut (ge-
ometry of distributions on manifolds), Ye. Olin (Finsler geometry), E. Petrov
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(geometry of submanifolds in Lie groups), L. Sergienko (nonholonomic geome-
try), K. Tenenblat (Minkowski geometry), V. Ushakov (geometry of ruled sub-
manifolds), A. Yampolsky (geometry of �ber bundles). From 2012 by 2015
Alexander Borisenko was a professor of the department of mathematical analysis
and optimization methods of Sumy State University. Since 2016 he is a lead-
ing researcher at the Mathematical Department of B. Verkin Institute for Low
Temperature Physics and Engineering of the National Academy of Sciences of
Ukraine.

As a visiting professor, he worked in the University of Haifa (Israel, 2013,
2010), Technical University of Berlin (Germany, 2010), University of Rome �La
Sapienza� (Italy, 2003), Autonomous University of Barcelona (Spain, 2000), Cen-
tre de Recerca Mathematica (Barcelona, 2000), University of Valencia (Spain,
1997, 1999, 2000, 2004, 2008), University of Brasilia (Brazil, 1996, 2008),
Bilkent University (Turkey, 1995). A. Borisenko took part as a Speaker in the
International Congress of Mathematicians in Beijing (2002) and Zurich (1994).

Alexander Borisenko is the author of more than 120 articles and two mono-
graphs (Intrinsic and extrinsic geometry of multidimensional manifolds / A.
Borisenko - M.: Examen, 2003. - 670 p.; An introduction to Hamilton and
Perelman's work on the conjectures of Poincare and Thurston / A. Borisenko,
E. Cabezas-Rivas, V. Miquel-Molina. - Matematiques, 2006. - 3 (2) - 150 p.).
He is the author of textbooks in Analytical Geometry (1993) and Di�erential
Geometry and Topology (1995) for undergraduates.
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To Hopf's conjecture about metric on the topological
product S2 × S2 of two 2-spheres

Yu.A. Aminov1

1B. Verkin Institute for Low Temperature Physics and Engineering, Kharkiv,
Ukraine

Hopf's well-known conjecture states that there exists no metric of stricly
positive curvature on the topological product S2 × S2 of two 2-spheres.

Note that, by Preissmann's theorem [1], on the topological productM×N of
two compact di�erentiable manifolds, there exists no metric of strictly negative
curvature.

In [2] M.Berger showed that if the sectional curvature K of a metric on the
S2 × S2 satis�es the inequalities δ ≤ K ≤ 1, then δ < 4

17 .
At our talk we expose three theorems from our article [3].
We consider the minimal cycles F 2

1 and F 2
2 ,which generate group π(S2×S2).

Let P0 is its point of intersection. Suppose that the metric on S2 × S2 has the
form

ds2 =
4∑

i,j=1

gijdu
iduj.

Let minimal cycles are coordinate surfaces :F 2
1 : u3 = 0, u4 = 0, F 2

2 : u1 =
0, u2 = 0. We assume that g13 = g14 = g23 = g24 = 0 and g12 = 0 on F 2

1 ,
g34 = 0 on F 2

2 . (1)
De�nition. We say that a globally minimal surface F 2

1 is uniformly stable

in the family of surfaces u3 = c3, u4 = c4 if the stability condition
∂2
√
g11g22−g212
∂ui∂ui ≥

0, i = 3, 4 holds at each point of this surface.
Theorem 1. If globally minimal cycles in the product M = S2 × S2

are uniformly stable and the metric satis�es the condition (1), then , at the
orthogonal intersection point of the cycles, the curvature of M is non positive,
at least for some area element.

Theorem 2. If , on the topological productM = S2×S2 with a Rieman-
nian metric , there exist orthogonal coordinates u1, ..., u4 and all 2-dimensional
coordinate surfaces u1 = const, u2 = const and u3 = const, u4 = const are
minimal, then the integral inequality∫

M

(K13 +K23 +K14 +K24)dV ≤ 0

holds, where dV is the volume element of M and Kij is the curvature of coor-
dinate surface.
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Consider metric on M = S2
1 × S2

2 of the form

ds2 = Φ1(P1, P2)ds
2
1 + Φ2(P1, P2)ds

2
2, (2)

where Pi and ds
2
i - a point and metric on S2

i . Let Φi(P1, P2) be C2 regular
functions, which are positive at all values of their arguments and have the form

Φ1 =

p∑
k

Ak(P1)Bk(P2), Φ2 =

q∑
k

Ck(P1)Dk(P2). (3)

Let all functions Bk(P2) have a minimum at same point P20 and all functions
Ck(P1) have a minimum at same point P10.Also suppose that Ak ≥ 0, Dk ≥ 0.
(4)

Theorem 3. Metric (2) on the topological product S2 × S2 under as-
sumptions (3-4) has non positive curvature at some point and for some tangent
area element.

[1] A.Preissmann, Comment.Math. Helv. 15, 175-216 (1943).

[2] M.Berger, Comp.Rend.Acad.Sci.Paris. 257, (26) 4122-4125 (1963).

[3] Yu.A.Aminov, Dokl. Math. 93, N 2, 211-115 (2016).

Almost geodesic mappings of �rst type
on spaces with a�ne connection onto symmetric

spaces

V.E. Berezovsky1, J. Mike�s2

1Uman National University of Horticulture, Uman, Ukraine
2Palacky University, 17. listopadu 12, Olomouc, CZ-77146, Czech Republic

N.S. Sinyukov de�ned almost geodesic mappings f : An → Ān of spaces with
a�ne connection [1]. He de�ned three types of these mappings: π1, π2 and π3.
We proved [2] that for dimension n > 5 there exist precisely these three types.
See [3, p. 455-480].

It is known [1] that any mapping π1 can be expessed as a composition of
a geodesic mapping and a canonical mapping π1. Canonical almost geodesic
mappings of �rst type are characterized by the following equations [3, p. 464]:

3(P h
ij,k + P α

ijP
h
αk) = Rh

(ij)k − R̄h
(ij)k + δh(kaij), (1)

where P h
ij is a deformation tensor of the connections, Rh

ijk and R̄h
ijk are the

curvature tensors of An and Ān, δ
h
i is the Kronecker delta, aij is a symmetric
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tensor, round parentheses denote a symmetrization of indices without division
by , and a comma denotes the covariant derivative on An.

Spaces with a�ne connection are called symmetric if their curvature tensor
is absolutely parallel, see [3, p. 87].

If a mapping f : An → Ān and Ān is symmetric, then in An the following
conditions are satis�ed:

R̄h
ijk,m = −P h

mαR̄
α
ijk + P α

miR̄
h
αjk + P α

mjR̄
h
iαk + P α

mkR̄
h
ijα. (2)

When studying the integrability conditions of equations (1) we found:

(n− 1) aij,k = −3P β
α(iR

α
j)kβ − P

β
αkR

α
(ij)β + P β

αβR
α
(ij)k +Rβ

(ij)k,β−

R(ij),k + 3P α
ijR̄αk − P β

αiR̄
α
(jβ)k + P β

kiR̄(jβ) − P β
αjR̄

α
(iβ)k+

P β
kjR̄(iβ) − δα(βaij)P

β
αk + δα(kaij)P

β
αβ −

1
n+2 B(ij)k,

(3)

where

Bijk = P β
αk(R

α
ijβ +Rα

βji)− P
β
αj(R

α
ikβ + 3Rα

βki) + 3P β
αβR

α
ijk + 3Rα

ijk,α−
R(ij),k +R(ik),j + 2P α

ijR̄αk − 2P α
ikR̄αj + P α

kiR̄jα − P α
ijR̄kα−

P β
αjR̄

α
(iβ)k + P β

αkR̄
α
(iβ)j − aijP α

αk − aαjP α
ik + aikP

α
αj + aαkP

α
ij ,

and Rij and R̄ij are the Ricci tensors on An and Ān, respectively.

The equations (1), (2) and (3) are a closed system of PDE with covariant
derivatives of Cauchy type with respect to the unknown functions P h

ij, aij and
R̄h
ijk, which, naturally, have to satisfy the following algebraic conditions

P h
ij(x) = P h

ji(x), aij(x) = aji(x), R̄h
i(jk)(x) = R̄h

(ijk)(x) = 0. (4)

We proved
Theorem A space An with a�ne connection admits canonical almost geodesic
mappings of �rst type onto symmetric spaces Ān if and only if inAn the equations
(1), (2), (3) and (4) have a solution with respect to the functions P h

ij, aij and
R̄h
ijk.

[1] Sinyukov N.S., Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979.

[2] Berezovski V.E., Mike�s J., On the classi�cation of almost geodesic mappings of a�ne-connected spaces.
Proc. of Conf. Di�. Geom. and Appl., 1988, Dubrovnik, Yugoslavia. Novi Sad (1989), 41-48.

[3] Mike�s J., et al, Di�erential geometry of special mappings. Palacky University Press, Olomouc, 2015.
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Quasiareal deformation in class of surfaces of constant
mean curvature

L. Bezkorovaina1, Y. Khomych1

1I.I. Mechnikov Odessa National University, Odessa, Ukraine

Quasiareal deformation is understood as an in�nitesimal deformation of the
�rst order with the given law of changing the element of area of a surface in
Euclidean three-space.

Let U
(
x1, x2

)
be a �eld of velocities of the points of the surface r =

r
(
x1, x2

)
at the initial moment of the deformation, such that U = Uαrα+U 0n,

where ri, n, i = 1, 2, are the basis vectors. The fundamental equations of the
quasiareal in�nitesimal deformation, which are expressed in terms of the compo-
nents of the partial derivatives of the �eld U, are derived in [2].

In this paper it has been established: in order that the �eld U ∈ C1 be a
deforming �eld of the quasiareal in�nitesimal deformation it is necessary and
su�cient that the components Uα, U0 satisfy the equation

Uα
,α − 2HU 0 = −2µ, (1)

where the function µ expresses the law of changing the element of area.
It is evident, that the class of the quasiareal in�nitesimal deformation is very

wide since one di�erential equation (1) contains four unknown functions. It is
expedient to study such deformation under the additional geometrical or me-
chanical conditions. For example, for the surface of constant mean curvature
on the condition that δH = 0 under the quasiareal in�nitesimal deformation
we have additional elliptic partial di�erential equation of the second order with
respect to the normal component of the deforming �eld

gαβU 0
α,β + 2

(
2H2 −K

)
U 0 = 0. (2)

The Riemann domain T has been described, in which the regular solution of
the equation (2) exists for the regular surfaces of constant mean curvature, this
solution is a continuous, non-zero everywhere in closed domain T . This condition
is a su�cient sign of the existence and uniqueness of the solution of the Dirichlet
problem for the equation (2) [1].

The corresponding theorems have been formulated for the quasiareal in�nites-
imal deformation in the class of the surfaces of constant mean curvature. An
in�nitesimal deformation of the �rst order of the surfaces of constant mean
curvature is discussed, for example, in a paper [3].
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[1] Vekua I. N., New methods of solution of elliptic equations [in Russian]. Gostekhizdat, Moscow, 1948.

[2] Bezkorovaina L., Khomych Y., Quasiareal in�nitesimal deformation of the surface in Euclidean three-space
[in Ukrainian]. Proc. Intern. Geom. Center, 7, No. 2, (2014), 6-19.

[3] Soyam Robah, On stable constant mean curvature surfaces in S2 ×R and H2 ×R. Trans. Amer. Math.
Soc., 362, No. 6, (2010), 2845-2857.

Isometricity of pretangent spaces to convex subsets of
Euclidean spaces

V.V. Bilet1

1Institute of Applied Mathematics and Mechanics of the NASU, 84100,
Dobrovolskogo Str. 1, Sloviansk, Ukraine

A pretangent space to the metric space (X, d) at a point p is a set of equiva-
lence classes of sequences x̃ = (xn)n∈N of points from X, tending to a sequence
(p, p, ...) with a given rate, [6]. We will discuss the problem of description the
conditions under which all pretangent spaces to an arbitrary metric space X at
a point p are isometric to convex sets in n-dimensional Euclidean space En. By
D. Dordovskyi in [3] it was proved that, for all points in En, every pretangent
space to En is isometric to En. Moreover, pretangent spaces to convex and star-
like sets on the Euclidean plane have been completely described by O. Dovgoshey,
F. Abdullayev and M. K�u�c�ukaslan in [4] and [5].

We consider the concept of midpoint convexity of metric space X at a
point that give us conditions of geodesity of pretangent spaces, [1]. Recall
that a metric space X is midpoint convex at a point p ∈ X if for every two
tending to p sequences x̃ and ỹ there exists a sequence z̃(x̃, ỹ), such that
d(xn, zn) = 1

2d(xn, yn) + o(max{d(xn, p), d(yn, p)}), d(yn, zn) = 1
2d(xn, yn) +

o(max{d(xn, p), d(yn, p)}) and
|d(xn,zn)− 1

2d(xn,yn)|
max{d(xn,p),d(yn,p)} =

|d(yn,zn)− 1
2d(xn,yn)|

max{d(xn,p),d(yn,p)} = 0. We
also use the in�nitesimal versions of the classical embedding theorems in En

which were obtained in [2]. In conclusion, the simple idea that a metric space Y
is isometric to a convex subset of En if and only if Y is geodesic and isometrically
embedded in En leads to the solving of our problem.

This work was supported by the grant of the State Fund for Fundamental
Research (Project N 20570) and by Project 15-1bb\19 �Metric Spaces, Harmonic
Analysis of Functions and Operators and Singular and Nonclassic Problems for
Di�erential Equations� (Donetsk National University, Vinnitsia, Ukraine).

[1] Bilet V., Geodesic spaces tangent to metric spaces, Ukr. Math.J., 64, No. 9, (2013), 1448-1456.

[2] Bilet V., Dovgoshey O., Isometric embeddings of pretangent spaces in En, Bull. Belg. Math. Soc. - Simon
Stevin, 20, No. 1, (2013), 91-110.
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[3] Dordovskyi D., Metric tangent spaces to Euclidean spaces, J. Math. Sci, New York, 179, No. 2, (2011),
229-244.

[4] Dovgoshey O., Abdullayev F., K�u�c�ukaslan M., Tangent metric spaces to convex sets on the plane, Reports
in Math., Helsinki Univ., 481, (2008), 1-31.

[5] Dovgoshey O., Abdullayev F., K�u�c�ukaslan M., Tangent metric spaces to starlike sets on the plane, J.
Nonlinear Convex Anal., 14, No. 3, (2013), 551-581.

[6] Dovgoshey O., Martio O., Tangent spaces to general metric spaces, Rev. Roumaine Math. Pures. Appl.,
56, No. 2, (2011), 137-155.

Foliations of nonnegative curvature

D.V. Bolotov1

1 B. Verkin Institute for Low Temperature Physics and Engineering, Prospekt
Nauky 47., Kharkiv, Ukraine

We are going to discuss our recent results about codimension one foliations
of nonnegative curvature on closed manifolds (see [1], [2]). In particular:

• we prove the Milnor conjecture for the leaves of codimension one nonnega-
tive Ricci foliations on closed manifolds and we show that the fundamental
group of such manifolds should be almost poly-ciclic;

• we establish the criteria of �atness of Ricci foliations, in particular, we show
that the foliation is �at i� the manifold is of homotopy type K(π, 1);

• we give the a�rmative answer to the G. Stuck's question about nonexis-
tence of codimension one foliations of nonnegative sectional curvature on
spheres except S3.

[1] Bolotov D., Topology of codimension-one foliations of nonnegative curvature. I, Mat. Sb., 204, �5,
(2013) 3-24.

[2] Bolotov D., Topology of codimension-one foliations of nonnegative curvature. II, Mat. Sb., 205, � 10,
(2014) 3-18 .

Incidence axioms for the boundary at in�nity of
complex hyperbolic spaces

Sergei Buyalo1, Viktor Schroeder2

1 St. Petersburg Dept. of Steklov Math. Institute RAS, Russia
2 Institut f�ur Mathematik, Universit�at Z�urich, Germany

We characterize the boundary at in�nity of a complex hyperbolic space as a
compact Ptolemy space that satis�es four incidence axioms.
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Extreme problems for curves and surfaces with
bounded curvature

R.V. Chernov1, K.D. Drach1

1V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, Ukraine

A hypersurface is called λ-convex (resp., λ-concave), if it is locally convex and
at each point there exists an outward (resp., inward) supporting totally umbilical
hypersurface of curvature equal to λ. In the smooth case the condition of being
λ-convex (concave) is equivalent to the boundedness of normal curvatures as
kn > λ (resp., λ > kn > 0) at each point and in every direction.

In the talk we will consider two series of problems. The �rst series is about a
so-called reverse isoperimetric problem, that is minimization of area (volume) of
compact domains assuming that the lengths (surface areas) of the boundaries are
given and �xed. For curves in R2 with bounded absolute curvature the problem
was addressed in [4]. For λ-convex curves on planes of constant curvature � in
[1], [2], [3]. We extend the results of Borisenko and Drach for λ-concave curves
on the Euclidean plane and in the 2-dimensional de Sitter space. Moreover, we
prove the reverse isoperimetric inequality in the 3-dimensional Euclidean space
for λ-concave surfaces.

The second series of questions we will cover in the talk is dealing with min-
imization of area (volume) of a bounded domain with a given diameter. A hy-
persurface is called λ1, λ2-convex, if it is λ1-convex and λ2-concave. For λ1, λ2-
convex hypersurface in Rn (resp., spherical space Sn and hyperbolic space Hn)
we prove the reverse isodiametric inequality which states that only a so-called
spindle-shaped hypersurface encloses a minimal volume among all λ1, λ2-convex
of given diameter.

[1] A. Borisenko, K. Drach. Extreme properties of curves with bounded curvature on a sphere. J. Dyn. Control
Syst., 21(3):311-327, 2015.

[2] A. Borisenko, K. Drach. Isoperimetric inequality for curves with curvature bounded below. Math. Notes,
95(5): 590-598, 2014.

[3] K. Drach. About the isoperimetric property of λ-convex lunes on the Lobachevsky plane. Dopov. Nats.
Akad. Nauk Ukr., (11):11-15, 2014.

[4] R. Howard, A. Treibergs. A reverse isoperimetric inequality, stability and extremal theorems for plane
curves with bounded curvature. Rocky Mountain J. Math., 25(2): 635-684, 1995.
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Minimal covers of Archimedean toroids

K.D. Drach1, Y.V. Haidamaka1

1V.N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, Ukraine

The talk focuses on toroidal maps of certain type and their covers. We
say that a �nite graph X embedded in a torus S such that every connected
component of S\X is homeomorphic to an open disc is called a map on the
torus S.

A map M obtained as a quotient of an Archimedean tessellation τ by some
translation subgroup G generated by two linearly independent vectors and which
preserves τ called an Archimedean toroidal map (toroid). Here an Archimedean
tessellation is a tessellation of the Euclidean plane by regular polygons of two or
more types, such that any two vertices can be mapped into each other by some
symmetry of τ .

Finally, we call a toroidal map M almost regular if it has a minimal number
of �ag orbits under the action of the automorphism group of M . Note that
for Archimedean toroids this number is never equal to 1, that is Archimedean
toroids are never regular.

The main result of the talk is summarized in the following theorem.

Theorem 1. Each Archimedean map on the torus has a unique minimal almost
regular toroidal cover. Moreover, this cover can be constructed explicitly.

This theorem extends the results obtained in [1] for minimal regular and
rotary covers of equaivelar toroidal maps. In the talk we will give all necessary
de�nitions and outline the idea of the proof.

[1] Drach K.D., Mixer M., Minimal covers of equivelar toroidal maps. Ars Mathematica Contemporanea, 9
(2015) 77-91.

Scissors-congruence for unbounded polygons and
polyhedra

K. Drach1, D. Sukhorebska1

1V.N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, Ukraine

Two polytopes A and B are called scissors-congruent (A ∼ B) if they can be
dissected into equal �nite sets of polytopal pieces. The classical Bolyai�Gerwien
theorem states that two polygons are scissors-congruent if and only if they have
equal areas [2]. However, for polyhedra equality of their volumes is not enough
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for being scissors-congruent. For 3-polytopes the Dehn�Sidler theorem states
that two bounded polyhedra are scissors-congruent if and only if their volumes
and so-called Dehn's invariants are equal [2].

We address the question of scissors-congruence for unbounded polyhedra in
R2 and R3.

A polygon is said to be unbounded if its boundary is composed of �nite number
of straight line segments and half-lines. A polyhedron is called unbounded if it
has unbounded faces.

For an unbounded polytope (polygon) A take an arbitrary point O and draw
from it all half-lines parallel to the half-lines lying in A (and having the same
directions). These half-lines �ll in some conical surface with vertex O. We call
this surface the limit angle φ(A) of A [1]. Denote by |φ(A)| the angular measure
of φ(A).

If all unbounded parts of A consist of parallel half-line edges, the limit angle
reduced to a set of half-lines and |φ(A)| = 0.

Theorem 1. Let A and B be unbounded polygons in R2.

1. If |φ(A)|+ |φ(B)| 6= 0, then A ∼ B if and only if |φ(A)| = |φ(B)|.

2. If |φ(A)|+ |φ(B)| = 0, then A ∼ B if and only if they have equal sum of
distances between the parallel half-line edges in each unbounded part.

Let A ⊂ R3 be an unbounded polyhedron such that φ(A) is the set of rays,
i.e. all unbounded parts are prisms Pi, i = 1, k. For each Pi draw a cross section
πi not intersecting the half-line edges of A and orthogonal to the edges of Pi.
Let P ′i be an in�nite part of Pi bounded by πi. Thus A is naturally decomposed
into �nite Af and in�nite A∞ parts, where A∞ =

⋃k
i=1 P

′
i and A

f = A\A∞.
Denote by W (A) the sum of the areas of the bases of P ′i .

Theorem 2. Two unbounded polyhedra A,B ⊂ R3 whose limit angles degen-
erate into sets of half-lines are scissors-congruent if and only if W (A) = W (B)
and Af ∪ P∼Bf ∪Q for some cubes P and Q.

[1] Alexandrov A. D., Convex polyhedra, Gosudarstv. Izdat. Tekhn.-Teor. Lit., Moscow-Leningrad, 1950.

[2] Boltyansky V. G., Hilbert's third problem, Science, Moscow,1977.
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Fundamental groups of orbits of smooth functions on
2-torus

B. Feshchenko1

1Institute of Mathematics of NAS of Ukraine, Tereshchenkivska 3, Kyiv,
Ukraine

Let M be a smooth surface, and D(M) be the group of di�eomorphisms of
M. The group D(M) acts on the space C∞(M) of smooth functions on M by
the following rule:

γ : C∞(M)×D(M)→ C∞(M), γ(f, h) = f ◦ h.

Under the action γ we will de�ne the orbit

O(f) = {f ◦ h |h ∈ D(M)}

of f ∈ C∞(M). Endow the space C∞(M) with the corresponding Whitney
topology. This topology induces some topology on O(f). Let also Of(f) be a
connected component of O(f), which contains f.

Let F(M) ⊂ C∞(M) be the set of smooth functions satisfying the following
two conditions:

(B) the function f takes a constant value at each connected component of ∂M ,
and all critical points of f belong to the interior of M ;

(P) for each critical point x of f the germ (f, x) of f at x is smoothly equivalent
to some homogeneous polynomial fx : R2 → R without multiple factors.

For the function f ∈ F(T 2) on 2-torus T 2 we obtain the description of
π1Of(f), see [1]�[5].

[1] Sergiy Maksymenko, Bohdan Feshchenko, Homotopy properties of spaces of smooth functions on 2�torus,
Ukrainian Mathematical Journal, vol. 66, no. 9 (2014) 1205-1212 (in Russian) arXiv:1401.2296

[2] Sergiy Maksymenko, Bohdan Feshchenko, Orbits of smooth functions on 2�torus and their homotopy
types, Matematychni Studii, vol. 44, no. 1 (2015) 67-83 arXiv:1409.0502.

[3] Sergiy Maksymenko, Bohdan Feshchenko, Functions on 2-torus whose Kronrod-Reeb graph contains a
cycle, Methods of Functional Analysis and Topology, no. 1 (2015) 22-40, arXiv:1411.6863.

[4] Bohdan Feshchenko, Deformations of smooth functions on 2-torus whose Kronrod-Reeb graph is a tree,
Proceedings of Intsitute of Mathematics of Ukrainian NAS, vol. 12, no. 6 (2015) (in Ukrainian)

[5] Bohdan Feshchenko, Actions of �nite groups and smooth functions on surfaces, 11 pages, to prepare in
Methods of Functional analysis and Topology, 2016
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On one way of �nding of in�nitesimal bendings of
convex surfaces with boundary conditions in

conformally Euclidean space

V.T. Fomenko1

1Anton Chekhov Taganrog Institute,
347900, Iniciativnaya, 48, Taganrog, Russia

vtfomenko@rambler.ru

n.1. Let R3 be a three dimensional conformally Euclidean space with metric
ds2 = E(Z)(dX2 + dY 2 + dZ2), where E ∈ C4,v, 0 < v < 1, E(Z) > 0.

n.2. Let further S, S ∈ R3, be a simply-connected surface, whose boundary is
a closed smooth curve. We suppose that S is given be equations X = x,
Y = y, Z = f(x, y), (x, y) ∈ D, where D is a domain of the Oxy �
plane, f ∈ C3,v, (0, 0, f(0, 0)) is a reinforced umbilical point of S.

n.3. Let {ξ, η, ζ} be the components of the displacement �eld of the surface
S. Then the functions ξ, η, ζ satisfy the following di�erential equations

ξx + pζx + (ln
√
E)′(1 + p2)ζ = 0;

ξy + ηx + pζy + qζx + 2(ln
√
E)′pqζ = 0;

ηy + qζy + (ln
√
E)′(1 + q2)ζ = 0,

 (1)

where (x, y) ∈ D, p = fx, q = fy ; index "
′" means the derivative by Z of

the function ln
√
E .

n.4. Let us consider a �eld {x sin γ, y sin γ, r cos γ} on the boundary ∂S, where
γ is a given function of class C1,v, r2 = x2 + y2. We consider the in�nites-
imal bendings of the surface S with the boundary condition

x sin γ · ξ + y sin γ · η + r cos γ · ζ = σ , (x, y) ∈ ∂D (2)

where σ is a given function on ∂D .

n.5. Necessary and su�cient criteria for the decision problem (1), (2) is given
the decision following problem

2∑
i,k=1

∂

∂xk

(
aik

∂U

∂xi

)
+

2∑
i=1

ei
∂U

∂xi
+ cU = 0 , on D (3)

r
∂U

∂r
+ bU = σ1 , on ∂D, (4)
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where aik, ei, c, b, σ1 are known functions, x1 = x , x2 = y ,
a11a22 − a2

12 ≥ a0 > 0 , a0 = const .

If we know the solution of the problem (3), (4), then we �nd the functions,
ξ, η, ζ as the solution of the problem (1), (2).

Generalized circular tractrices and Dini surfaces

V. Gorkavyy1, O. Nevmerzhitska2, K. Stiepanova3

1B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauka
ave., Kharkiv, Ukraine

2V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, Ukraine
3S. Kuznets Kharkiv National University of Economics, 9 Nauka ave., Kharkiv,

Ukraine

Yu. Aminov and A. Sym in [1] asked for a generalization of the classical
theory of B�acklund transformations of pseudo-spherical surfaces in E3 to the
case of surfaces in E4. This problem was studied in a series of authors papers,
see [2]. We discuss a particular problem concerning a generalization to E4 of
the classical Dini surfaces. A Dini surface is a pseudo-spherical surface in E3

obtained by a screw rotation of a tractrix. Dini surfaces correspond to one-soliton
solutions of the sine-Gordon equation and are characterized by a degeneration
of their B�acklund transformations. In order to construct a Dini type surfaces in
E4, we use the notion of generalized tractrices in E3.

Namely, let γ be an oriented regular space curve in E3. The end-points of
unit segments tangent to γ form a curve Γ ⊂ E3 called a directrix of γ. If Γ
belongs to E2 ⊂ E3, then γ is called a generalized tractrix in E3. Supposing Γ
to be a circle of radius r, we reconstruct a generalized tractrix γ ⊂ E3 whose
directrix is Γ. Analytically the problem is reduced to an autonomous system of
two ODE for two functions. Qualitative properties of the solution depend on r:
if r ≥ 1, then γ is in�nite and attracts to a circle of radius

√
r2 − 1; if r < 1,

then γ is �nite. The behavior of γ resembles circular tractrices of Euler [3],
hence γ is called a generalized circular tractrix.

Viewing E3 as a subspace in E4, we apply a particular screw rotation in E4.
Then γ sweeps out a surface F 2 ⊂ E4 with constant Gauss curvature, which
admits a B�acklund type transformation resulting in the circle Γ. Since F 2 inherits
fundamental properties of Dini surfaces in E3, we propose to consider F 2 as a
generalized Dini surface in E4. An interesting open problem is to discover how
generalized Dini surfaces in E4 may be interpreted analytically in the frames of
the theory of integrable systems including the theory of the sine-Gordon equation.
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[1] Aminov Y. Sym A., On Bianchi and Backlund transformations of two-dimensional surfaces in E4, Math.
Phys. Anal. Geom. 3 (2000), 75-89.

[2] Gor'kavyi V., Generalization of the Bianchi-B�acklund transformationof pseudo-spherical surfaces, J. Math.
Sciences 207 (2015), 467-483.

[3] Foote R., Levi M., Tabachnikov S., Tractrices, bicycle tire tracks, hatchet planimeters, and a 100-year-old
conjecture, Am. Math. Mon. 120 (2013), 199-216.

Optimal functions with isolated critical points on the
boundary of the surfaces

B.I.Hladysh1, O.O.Prishlyak1

1Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street,
Kyiv, 01601, Ukraine

Topological classi�cation of functions with isolated critical points on compact
manyfold was gotten in [1] and of Morse functions on manyfold with the boundary
� in [2].

LetM is smooth compact surface with one component of the boundary ∂M ,
f � smooth function, de�ned on this surface and which has no more than one
critical point on each level line.

Function f : M → < with isolated critical points, which belong to the single
component of the boundary of the surface and also are isolated critical points
of restriction f |∂M of function f to the boundary, we will call optimal if it has
the least possible number of critical points on de�ned surface among all such
functions.

Theorem 1. Optimal function, de�ned on surface with the boundary, except
of 2�dimentional disk, has exactly three critical points.

Chord diagram of saddle critical level line of function on smooth compact
surface with the boundary is the circle with the following elements:

(1) marked points, which are enumerated;

(2) chords, both ends of which are marked points and such that have no
common ends;

(3) coloration of arcs, which marked points divide the circle on, into two
colors, such that every two neighboring arcs have the di�erent color and after
interchanging the colors we get the coloration which equals to the �rst one.

Chord diagram are equivalent if the can replace each other by symmetry or
(and) turn, such that save the elements (1)�(3).

We can put relatively clearly the chord diagram into the correspondence to
some neighborhood of saddle critical level line of function f .
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Smooth functions f i g are topological equivalent in some neighborhood of
their critical level lines f−1(c1) i g

−1(c2) if there are exist ε1 > 0, ε2 > 0 and the
homeomorphism λ : f−1(c1−ε1, c1 +ε1)→ g−1(c2−ε2, c2 +ε2), which transfer
level lines of function f into level lines of function g and save the direction of
growing of functions.

Theorem 2 (Criterion of topological equivalence). Optimal functions are
topologically equivalent i� their chord diagram are equivalent.

[1] Kyzakon V.M., Kirichenko V.F., Prishlyak O.O., Smooth manifolds. Geometrical and topological aspects,
Kyiv, 2013.

[2] Hladysh B.I., Prishlyak O.O., Functions with nondegenerate critical points on the boundary of the surface
(in Ukrainian), Ukr. Mat. Zh., 68 (2016), �1, 28-37.

On qλ and qλ0 invariant spaces

M. Karaku�s1

1YY University, Zeve Kampus, Van, Turkey

Invariant sequence spaces which can be considered as topological sequence
spaces are very helpful for investigations of the duality of sequence spaces. For
instance, if the sequence space X satis�es the condition `∞ · X = X then its
α−, β and γ− duals (usually known as K�othe- Toeplitz duals) are same [5].
Garling [2] investigated B− and B0− invariant sequence spaces and Buntinas [3]
introduced and investigated q− and q0- invariant sequence spaces and recently,
Grosse- Erdmann [4] studied on `1 invariant sequence spaces. In this work,
we de�ne qλ and qλ0 invariant spaces, X with qλ · X = X and qλ0 · X = X,
respectively.

[1] Grosse-Erdmann, K-G., On l1-Invariant Sequence Spaces, J. Math. Anal. Appl., 262 (2001) 112-132.

[2] Buntinas, M.,Convergent and bounded Ces�aro sections in FK-spaces, Math. Z. 121 (1971) 191-200.

[3] Garling, D. J. H.,On topological sequence spaces, Proc. Camb. Philos. Soc. 63(115) (1967) 997-1019.

[4] Boos, J., Classical and Modern Methods in Summability, Oxford University Press. New York, 2000, pp.
600.

Fenchel's Problems for a de Sitter n−Simplex

Baki Karl��ga1

1Department of Mathematics, Sciences Faculty
Gazi University, 06500, Teknikokullar, Ankara-Turkey

W. Fenchel raised two questions regarding two sets of (n(n+ 1))/2 positive
real numbers in his book [1]. What are the necessary and su�cient conditions for
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each set to be the dihedral angles and edge lengths of a hyperbolic n-simplex?
These problems were solved by Feng Luo ([2]) and Karliga ([3]) by using Gram
matrix and Edge matrix of a hyperbolic n-simplex, respectively.

It is natural to pose the above Fenchel's problems and give Gram and Edge
matrices of a de Sitter n-simplex. In this paper, we give the necessary and
su�cient conditions for a given symmetric matrix to be the Edge or Gram matrix
of a de Sitter n-simplex.

[1] Fenchel, W.,Elementary Geometry in Hyperbolic Space, De Gruyter, Berlin, p. 174, (1989).

[2] Luo, F.,On a Problem of Fenchel,Geometriae Dedicata,Vol 64, pp 277-282 (1997).

[3] Karliga, B.,Edge Matrix of Hyperbolic Simplices,Geometriae Dedicata, Vol 109, Issue 1, pp 1-6 (2004).

[4] O'Neill, B., Semi-Riemannian Geometry, Academic Press, London, 46-49,54-57,108-114,143-144 (1983).

[5] Ratcli�e, J.G., Foundations of Hyperbolic Manifolds, Springer-Verlag, Berlin, 36 (1994).

[6] Izumiya,S.,Tari F.,Projections of surfaces in the hyperbolic space along horocycles,Proceedings of the
Royal Society of Edinburh 140A: 399-418,2010

[7] Damian, H.,Computation of hyperbolic structures on 3-dimensional orbifolds,Doctoral disserta-
tion,Department of Mathematics and Statistics, The University of Melbourne,2005.

[8] Su�arez-Peir�o, E., A Schl�a�i Di�erential Formula for Simplices in Semi-Riemannian Hyperquadrics, Pasi�c
Journal of Mathematics, 194(1):229 (2000).

On the geodesic mappings of quasi-Einstein spaces

V.Kiosak1

1Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13,
Kyiv 01601, Ukraine

We investigate the equation

Eij = uiuj, (1)

where Eij
def
=Rji −

R

n
gij is the Einstein tensor, Rij is the Ricci tensor, R is the

scalar curvature, and ui is a certain vector of a pseudo-Riemannian space Vn,
n > 2, with metric tensor gij. For a long time, Eq. (1) has been attracting
the attention of researchers, �rst of all, due to its application in mechanics, in
particular, in �uid mechanics, and also as a generalization of Einstein spaces,
i.e., spaces where the Einstein tensor is zero.

De�nition 1. The pseudo-Riemannian space Vn di�erent from a space of con-
stant curvature is called a quasi-Einstein space and denoted by Mn if conditions
(1) are satis�ed in it.

Note that, convolving (1) and taking into account that the Einstein tensor
is traceless, one can easily make sure that the vector ui is necessarily isotropic,
i.e.,
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uαu
α = 0.

Here, ui = uαg
αi, and gy are elements of the matrix inverse to gij.

De�nition 2. A di�eomorphism f : Vn → V̄n is called a geodesic mapping of
Vn onto V̄n if f maps any geodesic curve in Vn onto a geodesic curve in V̄n.

We proved following theorems.
Theorem 1. If quasi-Einstein pseudo-Riemannian space Vn has constant scalar

curvature and permits trivial geodesic mapping, then it should permit a solution
of equations system:

aij,k = λigjk + λjgik

λi, j = µgij +
R

n(n− 1)
aij

µ,i =
2R

n(n− 1)
λi

relatively to tensor aij, vector λi and invariant µ.
Theorem 2. Quasi-Einstein pseudo-Riemannian space with constant scalar

curvature is closed relatively to nontrivial geodesic mappings.

Some systems of nonlinear PDE which are soluble in
closed form

Oldrich Kowalski1

1Charles University, Mathematical Institute, Prague, Czech Republic
kowalski@karlin.m�.cuni.cz

The goal of this lecture is to study so-called Riemannian manifolds of conullity
two. This means that, at any point, there is an orthonormal basis such that the
each curvature component with at least free distinct indices is always equal
to zero. Most �geometric classes� of such manifolds in dimension 3 can be
expressed in an explicit form, using only arithmetic operations, di�erentiation
and integration, involving some number of arbitrary functions.

[1] E. Boeckx, O.Kowalski, L. Vanhecke, Riemannian manifolds of conullity two (Monograph). World Scien-
ti�c Publishers, Singapore, 1996.
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The gap phenomenon in parabolic geometry

Boris Kruglikov1

1University of Tromsø, Norway

Abstract: In 2014 together with Dennis The we resolved the gap problem
in complex or split-real parabolic geometry, i.e. we computed the amount of
submaximal symmetry for every geometry in the class. Results of this type have
been known for selected geometries since Ricci, Tresse, Fubini, Cartan, Egorov,
Kobayashi, Sinyukov, Yano and some others via speci�c techniques. However
it was in our paper that we �rst presented a universal solution for a large class
of geometries, including conformal structures, systems of second order ODE,
almost Grassmanian and Lagrangian structures, generic parabolic distributions,
exceptional geometries etc. In later development we covered CR-structures, c-
projective structures and some other real (non-split) speci�cation. I will review
the results and overview further developments and problems.

[1] Boris Kruglikov, Dennis The, The gap phenomenon in parabolic geometries // Journal f�ur die reine und
angewandte Mathematik (Crelle's Journal), DOI: 10.1515/crelle-2014-0072 (2014).

[2] Boris Kruglikov, Vladimir Matveev, Dennis The, Submaximally symmetric c-projective structures //
International Journal of Mathematics 27 (2016), No. 3, 1650022 - 34 pp.

[3] Boris Kruglikov, Submaximally symmetric CR-structures // Journal of Geometric Analysis, DOI:
10.1007/s12220-015-9663-x (2015).

[4] Boris Kruglikov, Henrik Winther, Lenka Zalabova, Submaximally symmetric quaternionic structures //
arXiv: 1607.02025 (2016).

About concircular in�nitesimal transformations in the
second approximation Riemannian space

A. Krutogolova1, M. Pen'kova1, S. Pokas'1

1I.I. Mechnikov Odessa National University,
Institute of mathematics, economics and mechanics,

Dvoryanskaya Str. 2, Ukraine

For a given Riemannian space Vn(x; g) in the surrounding area of its random
�xed rpoint M0(x

h
0) we have built the associated invariant space of the second

approximation Ṽ 2
n (y; g̃(y)) ([2],[3]):

g̃ij(y) = gij
◦

+
1

3
Riαβj
◦

yαyβ, (1)

where gij◦ = gij(M0), Riαβj
◦

= Riαβj(M0).
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In the space Ṽ 2
n we've examined concircular in�nitesimal transformations ([4])

y′h = yh + ξ̃h(y)δt (2)

While we were examining the �rst group of system equations:

∇̃(iξ̃j) = ψ(y)g̃ij
∇̃ijψ = φ(y)g̃ij,

(3)

we have got an expression of the displacement vector ξ̃h(y) of this transforma-
tions in the form of a uniformly convergent power series:

ξ̃h(y) = ah. + ah.ly
l + aαthα +

1

2

(
b
1
yh − 1

2
Abh

)
+

+
∞∑
p=2

[
(−1)p+1

2p− 1
aαt(p)hα +

1

2p

(
b

2p−1
yh − 1

2
A bh

2p−2

)
+

+
(−1)p

4(2p− 1)
A

p−1∑
s=1

2p− 2s− 1

p− s
bα

2p−2s−2
t(s)hα

]
+

1

3

(
b
2
yh − 1

2
A bh

1

)
+

+
1

12
A bα

1
thα +

1

5

(
b
4
yh − 1

2
A bh

3

)
+

+
∞∑
p=3

{
1

2p+ 1

(
b
2p
yh − 1

2
A bh

2p−1

)
+
A

2p

[
p+ 1

2p+ 1
bα

2p−3
thα+

+

p−1∑
s=2

(−1)s+1(p− s)
2p− 2s+ 1

bα
2p−2s+1

t(s)hα

]}
,

(4)

where A = gl1l2
◦

yl1yl2, thp =
1

3
Rh
.l1l2p
◦

yl1yl2, t(p)hs = t(p−1)h
αt
α
s (p = 2, 3, ...).

Then while we were examining the second group of system equations (3), we
have got an expression of function ψ(y) through the function φ(y) and objects
of the space Vn in the point M0:

b
p+1

=
1

p(p+ 1)
A C
p−1

(p = 1, 2, ...), (5)

where ψ(y) = b+
∞∑
p=1

bp, φ(y) = c+
∞∑
p=1

cp,

and b
p

= bl1...lpy
l1 · . . . · ylp, c

p
= cl1...lpy

l1 ·. . .·ylp, and bl1...lp, cl1...lp are constants.

[1] Aminova A.V., Projective transformations of pseudo-Riemannian manifolds. Janus-K, Moscow, 2003.
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[2] Petrov A.Z., New methods in theory of general relativity, Nauka, Moscow, 1966.

[3] Shirokov P.A., Selected works on geometry, Kazan', 1966.

[4] Yano K., Concircular geometry, Japan: Proc. Acad. (1940), 195-200, 354-360, 442-448, 505-511.

Problem with integral conditions for evolution
equations in Banach space

G. Kuduk1

1University of Rzeszow, Poland

Let A be a given linear operator acting in the Banach space B, and for
this operator, arbitrary powers An : B → B, n ∈ N. Denote be x(λ) the
eigenvector of the operator A which corresponds to its eigenvalue λ ∈ Λ, i.s.
nonzero solution in B of the equation Ax(λ) = λx(λ), λ ∈ Λ, where λ ⊂ C. If
Λ is not an eigenvalue of the operator A then x(λ) = 0.

We consider next problem with integrals condition

d2u

dt2
+ a(A)

du

dt
+ b(A)u = 0, t ∈ [0, T ], (1)

∫ α

0

u(t)dt+

∫ h

β

u(t)dt = ϕ1,

∫ α

0

tu(t)dt+

∫ h

β

tu(t)dt = ϕ2, (2)

where ϕ1, ϕ2 ∈ B, α > 0, β > 0, h > 0, α < β < h < ∞, u :
(0;α) ∪ (β;h)→ B - is an unknown function, a(A) : B → B, b(A) : B → B

- is abstract operators with entire symbols a(λ) 6= const, b(λ) 6= const.

Let for m = {0, 1} function Mm(t, λ) be a solution of the problem

d2Mm(t, λ)

dt2
+ a(λ)

dMm(t, λ)

dt
+ b(λ)Mm(t, λ) = 0, t ∈ [0, T ], (3)

∫ α

0

tkMm(t, λ)dt+

∫ h

β

tkMm(t, λ)dt = δkm, k = {0, 1}, (4)

where δkm is the Kronecker symbol.

De�nition. We shall say that vectors ϕ1, ϕ2 ∈ B, from B belong L ⊂ B.
If dependent exists on linear operators Rϕk

(λ) : B → B, λ ∈ Λ and measures
µϕk

such that

ϕk =

∫
Λ

Rϕk
(λ)x(λ)dµϕk(λ). (5)
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Theorem. Let in the problem (1), (2), the vectors ϕk belongs L. There
ϕk, k = {1, 2} can be represented in the form (5). Then the formula

U(t) =

∫
Λ

Rϕ1
(λ){M0(t, λ)x(λ)dµϕ1

(λ) +

∫
Λ

Rϕ2
(λ){M1(t, λ)x(λ)dµϕ2

(λ),

de�nes solution of the problem (1), (2), Mm(t, λ) is a solution of the problem
(3), (4).

Be means of the di�erential-symbol method [1] we construct of the problem
(1), (2).

[1] Kalenyuk P.I., Nytrebych Z.M., Generalized scheme of separation of variables. Di�erential-symbol method.
Publishing House of Lviv Polytechnic National University, 2002.

Some aspects of the theory of in�nitely small almost
geodesic transformations of a�nely connected spaces

with torsion

L.P. Ladunenko1

1South Ukrainian National Pedagogical University, Staropotofrankovskaya Str.
26, Odessa, 65020, Ukraine

A�nely connected spaces An of class of smooth Cr (n > 2, r > 1) are
considered. As it is known [1], a curve L is called an almost geodesic line of the
space An, if in every point of the curve coplanar along L two-way distribution,
that contains a tangent vector of this curve, exists.

An in�nitely-small transformation

x̃h = xh + εξh(x1;x2; ...;xn)

of an a�nely connected space An is called almost geodesic, if as a result of it
every geodesic line of the space An turns into a curve, that in main part, i.e. with
neglecting by the addends of the second and higher order of smallness relative
to the parameter ε, is an almost geodesic line of the space An.

Special almost geodesic transformations of the type Π4
2(ξ;µ) of a�nely con-

nected spaces An with torsion are considered.
It is proved, that, in case of analytical character of vector �elds ξh relative to

µhi structure, a Lie group Π̃4
2(ξ;µ) of in�nitely small transformations is de�ned

in a�nely connected space Ãn without torsion, that is associated with the space
An.

The maximal order of the group is found. It is shown that, in particular,
holomorphically-plane almost complex manifolds with an integrable structure
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present examples of spaces Ãn of the maximal order mobility relative to the Lie
group Π̃4

2(ξ;µ).

[1] Sinyukov N.S., Geodesic mappings of riemannian spaces, Science, Moscow (1979), 255 (Russian).

On the homotopy types of right orbits of Morse
functions on surfaces

S.I. Maksymenko1

1Institute of Mathematics of NAS of Ukraine, Tereschenkivska Str. 3, Kyiv

Let M be a connected orientable surface and f : M → P be a Morse
map. Denote by Did the group of di�eomorphisms ofM isotopic to the identity.
This group acts from the right on the space of smooth maps C∞(M,P ) and
one can de�ne the stabilizer S = {h ∈ Did | f ◦ h = f} and the orbit
O = {f ◦ h | h ∈ Did} of f with respect to that action.

On the other hand, the stabilizer S acts on the Kronrod-Reeb graph Γ of f .
Denote by G the group of all automorphisms of Γ induced by elements from S.

The homotopy type of S and the higher homotopy gruops ofO were computed
in [4]. In [5] it was proved that O has �nite homotopy dimension, and in
E. Kudryavtseva [2, 3] is was shown that O is homotopy equivalent to a quotient
space of some p-dimensional torus by a free action of the above group G.

The aim of the talk is to describe precise algebraic structure of the funda-
mental group π1O given in [6] for the case whenM is distinct from the 2-sphere
and 2-torus.

The case of 2-torus is considered in a series of papers by author and B. Fes-
hchenko, see [7, 1]

[1] B. Feshchenko, Deformation of smooth functions on 2-torus whose Kronrod-Reeb graphs is a tree,
Topology of maps of low-dimensional manifolds, vol. 12, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat.
Zastos., no. 6, pp. 204�219.

[2] E. Kudryavtseva, The topology of spaces of Morse functions on surfaces, Math. Notes 92 (2012), no. 1-2,
219�236.

[3] E. Kudryavtseva, On the homotopy type of spaces of Morse functions on surfaces, Mat. Sb. 204 (2013),
no. 1, 79�118.

[4] S. Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global
Anal. Geom. 29 (2006), no. 3, 241�285.

[5] S. Maksymenko, Homotopy dimension of orbits of Morse functions on surfaces, Travaux Math�ematiques
18 (2008), 39�44.

[6] S. Maksymenko Deformations of functions on surfaces by isotopic to the identity di�eomorphisms,
arXiv:1311.3347v2.

[7] S. Maksymenko, B. Feshchenko, Orbits of smooth functions on 2-torus and their homotopy types, Matem-
atychni Studii 44 (2015), no. 1, 67�84.



September 12�16, 2016, Kharkiv, Ukraine 31

Foliations with all non-closed leaves on non-compact
surfaces

S. Maksymenko1, E. Polulyakh1

1Institute of mathematics of the National Academy of Sciences of Ukraine,
Tereshchenkivska str. 3, Kyiv 01004, Ukraine

Let X be a 2-dimensional manifold possibly non-connected and having a
boundary, and ∆ be a one-dimensional foliation on X. We will say that ∆
belongs to class F if it satis�es the following two conditions.

1. Every connected component ω of ∂X is a leaf of ∆.

2. Let ω ∈ ∆ be a leaf, and J = [0, 1) if ω ⊂ ∂X, and J = (−1, 1) otherwise.
Then there exists an open neighborhood U of ω and a homeomorphism
φ : R × J → U such that φ(R × 0) = ω and φ(R × t) is a leaf of ∆ for
all t ∈ J .

De�nition. Let Xi be a surface with a foliation ∆i, i = 1, 2. Then a home-
omorphism h : X1 → X2 will be called foliated if it maps leaves of ∆1 onto
leaves of ∆2.

Suppose ∆ is a foliation of class F on a surface X. Let Y = X/∆ be the
space of leaves, and p : X → Y be the corresponding quotient map. Endow Y

with the quotient topology.
It follows from condition 2 above that each leaf of ∆ is a closed subset of X,

so Y is a T1-space. However, in general, Y is not a Hausdor� space.

De�nition. Let ω be a leaf of ∆ and y = p(ω) ∈ Y . We will say that ω is a
special leaf and y is a special point of Y whenever Y is not Hausdor� at y.

De�nition. A subset S ⊂ R2 will be called a model strip if there exist a < b
such that R× (a, b) ⊂ S ⊂ R× [a, b] and the intersection S ∩ R× {a, b}
is a disjoint union of open intervals.

A model strip R× (a, b) will be called open.

Theorem. Let X be a connected 2-dimensional manifold and ∆ be a foliation
on X belonging to class F . Suppose that the family Σ of all special leaves of ∆
is locally �nite, and let Q be a connected component of X \ (Σ ∪ ∂X). Then
the following statements hold true.

1. Q is foliated homeomorphic either with a standard cylinder C or a standard
M�obius bandM or an open model strip R× (−1, 1). Moreover, in the �rst
two cases Q = X.
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2. Suppose Q is foliated homeomorphic with an open model strip. Fix any
foliated homeomorphism φ : R× (−1, 1)→ Q and denote

A = φ
(
R× (−1, 0]

)
, B = φ

(
R× [0, 1)

)
.

Then the closures A and B are foliated homeomorphic to some model
strips.

This theorem implies that the topological structure of the foliation ∆ ∈ F is
uniquely determined by the combinatorics of gluing model strips.

Geometry of one in�nitely symbolic representation of
real numbers and metric problems associated with it

V.P. Markitan1

1Institute of Mathematics of NAS of Ukraine, Tereschenkivska Str. 3, Kyiv

Let (qj)j∈N ⊂ (0; 1) be a sequence, and M = ||mik|| be the in�nite ma-
trix de�ned by mik = qi−1

k−1 (1− qk−1). We will assume that
∏∞

n=1mαnn = 0
for any sequence of positive integers (αn). We consider a system of encoding
(representation) of the fractional part of a real number x with in�nite alpha-
bet (αn(x) = αn ∈ N) having a zero redundancy (any number has a unique
representation) and depending on an in�nitely many parameters qj:

(0; 1] 3 x = qα1
0 +

∑∞
k=1 q

αk+1

k

∏k
n=1 q

αn−1
n−1 (1−qn−1) ≡ ∆α1α2...αn.... (1)

The set ∆c1c2...cm =
{
x | x = ∆c1c2...cmam+1am+2..., am+i ∈ N, i ∈ N

}
will be

called a cylinder of rank m. Our aim is to describe a geometry of the represen-
tation (1) (geometric meaning of digits, properties of cylidrical sets, etc.). The
following simple properties of cylinders hold true:

1.
∞⋃
c1=1

∞⋃
c2=1

. . .
∞⋃

cm=1
∆c1c2...cm = (0; 1]; 2. ∆c1c2...cm =

∞⋃
i=1

∆c1c2...cmi;

3. ∆c1...cm =
(
∆c1...cm−1[cm+1]11...; ∆c1...cm−1cm11...

]
;

4. The length of a cylinder: |∆c1...cm| =
∏m

n=1 q
cn−1
n−1 (1− qn−1).

5. |∆c1...cmi|/|∆c1...cm| = qi−1
m (1− qm) = mi(k+1).

Lemma 1. Let λ be the Lebesgue measure. Then

1.λ

( ∞⋃
i=k+1

∆c1...cmi

)
= (1− q0) . . . (1− qm−1) q

c1−1
0 . . . qcm−1

m−1 q
k
m;

2. λ

(
k⋃
i=1

∆c1...cmi

)
= (1− q0) . . . (1− qm−1) q

c1−1
0 . . . qcm−1

m−1

(
1− qkm

)
;

3. λ

(
n⋃

i=k+1

∆c1...cmi

)
= (1− q0) . . . (1− qm−1) q

c1−1
0 . . . qcm−1

m−1 q
k
m

(
1− qn−km

)
.
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Theorem 1. Let (Vn) be a sequence of subsets of N, and

C = {x | x = ∆α1α2...αn..., αn(x) ∈ Vn}

1. C is a sum of half-intervals if Vn = N for all n larger than some n0;
2. C is nowhere dense, if inequality Vn 6= N holds an in�nite number of times;

3. λ(C) =
∏∞

k=1
λ(Fk+1)
λ(Fk) =

∏∞
k=1

(
1− λ(F̄k+1)

λ(Fk)

)
, where F0 = (0; 1] , Fk =⋃

c1∈V1
. . .

⋃
ck−1∈Vk−1

⋃
i∈V

∆c1...cmi, F̄k+1 = Fk \ Fk+1.

In particular, we give a negative answer to the following problem: suppose
all Vn coincide with the same subset V ( N. Is it true that λ(C) = 0? Set
qj = 1

(j+2)2 , j ∈ Z0 and Vn = N� {i} for some i = 2, 3, . . .. Then λ(C) > 0.

[1] M. Pratsiovytyi Geometry of real numbers with in�nite-symbol encoding as foundations of topological,
metric, fractal and probabilistic theories. Scienti�c journal of the National Pedagogical Dragomanov
University. (2013), no. 14, p. 189�216.

Topological stability of continuous functions with
respect to averaging by measures with locally constant

densities

Oksana Marunkevych1

1Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

In [1] the authors obtained su�cient conditions for topological stability of
continuous functions f : R → R having �nitely many local extremes with
respect to averagings. It is shown that this global problem reduces to a stability
of germs of f near these local extremes.

In [1] the authors also obtained su�cient conditions for topological stability
of germs with respect to averagings by discrete measures with �nite supports.

In the present paper [2] we will give su�cient conditions for topological sta-
bility of germs with respect to measures with piece wise continuous (and in
particular with piece wise constant) densities, see Theorems 1 and 2.

Theorem 1. Let f, g : [−ε; +ε] → R � be two piece wise 1� dierentiable
functions and h = f − g. Suppose the following conditions hold:

1) f and g strictly decrease on [−ε; 0] and strictly increase on [0; +ε];
2) there exists C > 0 such that for all x ∈ [−α; +α] the following inequality

holds:
f ′′α(x) ≥ Cα;

3) the derivative h′ = g′ − f ′ is continuous at 0 and h′(0) = 0. Then the
germ of g at 0 is topologically stable with respect to averagings by measure µ.
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Theorem 2. Let g : [−ε; ε]→ R be a piece wise 1-di�erentiable function,
satisfying the following conditions:

1) g strictly decreases on [−ε; 0] and strictly increases on [0; +ε];
2) there exist �nite limits

L = lim
x→0−0

g′(x), R = lim
x→0+0

g′(x).

For i = 0; . . . ;n+ 1 de�ne the following numbers

Xi := Lµ[t0; ti] +Rµ[ti; tn+1] = L
i−1∑
j=0

(tj+1 − tj)pj +R
n∑

j=i−1

(tj+1 − tj)pj.

Suppose that for each i ∈ 0; . . . ;n at least on of the numbers Xi and Xi+1 is
non-zero. Then the germ of g at 0 is topologically stable with respect to the
averagings by measure µ.

[1] Maksymenko S. and Marunkevych O., Topological stability of functions with respect to averagings,
Ukrainian Math. Journal 68, no. 5 (2016) 642-656.

[2] Maksymenko S. and Marunkevych O., Topological stability of continuous functions with respect to
averaging by measures with locally constant densities, Proc. of Intsitute of Math. of Ukrainian NAS 8,
no. 6 (2015) 146-163.

On ultrametric fractals generated by max-plus closed
convex sets of idempotent measures

Natalia Mazurenko1

1Vasyl Stefanyk Precarpatian National University, 76025 Shevchenka Str.,
Ivano-Frankivsk, Ukraine

In [3], the authors de�ned the notion of invariant idempotent measure on
a complete ultrametric space. These measures are idempotent counterparts of
the probabilistic fractals [2]. Recall that an idempotent measure on a compact
Hausdor� space X is a functional µ : C(X)→ R that preserves constants, the
maximum operation and is weakly additive (i.e., preserves sums in which at least
one summand is a constant function) [4]. Given an arbitrary metric space X,
we denote by I(X) the set of idempotent measures of compact supports on X.

Let (X, d) be an ultrametric space. Let us de�ne an ultrametric on the set
I(X). For any ε > 0, denote by Fε = Fε(X) the set of all functions ϕ ∈ C(X)
satisfying the property: for any y ∈ ϕ(X) the set ϕ−1(y) is the union of open
balls of radii ε. The space I(X) of probability measures with compact supports
is endowed with the metric d̂:

d̂(µ, ν) = inf{ε > 0 | ν(ϕ) = µ(ϕ), for every ϕ ∈ Fε(X)}.
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This metric turns out to be an ultrametric on I(X), see [1].
A nonempty subset A ⊂ I(X) is called max-plus convex if max{t+µ, ν} ∈ A

for every µ, ν ∈ A and t ∈ [−∞, 0]. We endow the set ccI(X) of closed convex
subsets of idempotent measures of compact support on X with the Hausdor�
metric.

The aim of the talk is to obtain counterparts for the construction ccI of
ultrametric fractals described in [3].

[1] O. Hubal and M. Zarichnyi, Idempotent probability measures on ultrametric spaces, J. Math. Anal. Appl.
V. 343, Issue 2, 2008, 1052�1060.

[2] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30(1981), 713�747.

[3] N. Mazurenko, M. Zarichnyi, Idempotent ultrametric fractals, Visnyk of the Lviv Univ. Series Mech.
Math. 79(2014), 111�118.

[4] M. Zarichnyi, Spaces and maps of idempotent measures, Izvestiya: Mathematics, 2010, 74:3, 481�499.

The mean curvature �ow associated to a density
(paying special attention to curves)

Vicente Miquel1

1University of Valencia, Spain

Iâ�TMll describe what is the mean curvature �ow associated to a density
(subject on which that I started to work with A. Borisenko) and will give some
account of my recent work with F. Vi�nado-Lereu, divided in two parts:

In Rn with a density eψ, we study the mean curvature �ow associated to the
density (ψMCF) of a hypersurface. The main results of the �rst part concern
with the description of the evolution under ψMCF of a closed embedded curve
in the plane with a radial density, and with a statement of subconvergence to a
ψ-minimal closed curve in a surface under some general circumstances.

In the second part we de�ne Type I singularities for the ψMCF and describe
the blow-up at singular time of these singularities. Special attention is paid to
the case where the singularity come from the part of the ψ-curvature due to
the density. We describe a family of curves whose evolution under ψMCF (in a
Riemannian surface of non-negative curvature with a density which is singular at
a geodesic of the surface) produces only type I singularities and study the limits
of their blow-ups.

[1] Miquel, Vicente; Vi�nado-Lereu, Francisco, The curve shortening problem associated to a density // Calc.
Var. Partial Di�erential Equations, 55 (2016), no. 3, 55-61.

[2] Miquel, Vicente; Vi�nado-Lereu, Francisco, Type I singularities in the curve shortening �ow associated to
a density // arXiv:1607.08402.
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Pseudosymmetric locally conformal Kaehler manifolds

Pegah Mutlu1, Zerrin �Sent�urk1

1Istanbul Technical University, Faculty of Science and Letters, Mathematics
Engineering Department, Maslak, TR-34469, 
Istanbul, Turkey

sariaslani@itu.edu.tr
senturk@itu.edu.tr

The notion of a locally conformal Kaehler manifold (an l.c.K-manifold) in a
Hermitian Geometry has been introduced by I. Vaisman in 1976. In this work,
we introduced the Walker type identities in l.c.K-space forms. Furthermore, the
Roter type l.c.K-space forms are given. Moreover, the Bochner curvature tensor
in l.c.K-manifolds and l.c.K-space forms are presented and some properties of
the Bochner curvature tensor in an l.c.K-space form are studied.

[1] Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math, 44, (1992), 1-34.

[2] Deszcz, R., On some Akivis-Goldberg type metrics, Publ. Inst. Math. (Beograd) (N.S.) 74 (88) (2003),
71-83.

[3] Deszcz, R., Hotlo�s, M. and �Sent�urk, Z. On some family of generalized Einstein metric conditions,
Demonstr. Math. 34 (2001), 943-954.

[4] Kashiwada, T., Some Properties of Locally Conformal Kaehler Manifolds, Hokkaido Mathematical
Journal Vol. 8 (1978), 191-198.

[5] Matsumoto, K., Locally Conformal Kaehler Manifolds And Their Submanifolds, MEMORIILE
SEC�TIILOR �STIIN�TIFICE, XIV (1991), 1-49.

[6] Tachibana, S., On the Bochner curvature tensor, Natur. Sci. Rep. Ochanomizu Univ., 18, (1967),
15-19.

[7] Vaisman, I., On Locally Conformal Almost Kaehler Manifolds, Israel J. of Math., 24, (1976), 338-351.

[8] Vanhecke, L., The Bochner curvature tensor on almost Hermitian manifolds, Rend. Sem. Mat. Univ. e
Politec. Torino (34), 21-38. (1975-76), 71-83.

Minimal G-structures induced by the Lee form

K. Niedzia lomski1

1University of Lodz, Banacha 22,  L�od�z, 90-238, Poland

Let (M, g) be an oriented Riemannian manifold and denote by SO(M) asso-
ciated oriented orthonormal frame bundle. A G�structure on M is equivalent to
existence of a reduction P ⊂ SO(M) of a structure group SO(n), n = dimM ,
to G. Let ∇ be the Levi�Civita connection of g and denote by ω the connection
form on the oriented orthonormal frame. Assume that on the level of Lie algebras
the decomposition

so(n) = g⊕ g⊥

is ad(G)�invariant.
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Introducing a natural Riemannian metric on SO(M) we state the condition
for minimality of P as a submanifold in SO(M) [4]. It is an equation involving,
so called, intrinsic torsion of a G�structure, which is a di�erence of the Levi�
Civita connection ∇ and the G�connection ∇G induced by the g�component ωg

of ω. We show that minimality is equivalent to harmonicity of the unique section
σP of the associated bundle SO(M)/G. Here, harmonicity is considered as a
map (not a section) with respect to some modi�cation of a Riemannian metric
on the base manifold M . This condition reminds condition of harmonicity of
G�structures [1].

Finally, we give examples of minimal G�structures by examining condition of
minimality in the case of locally conformally K�ahler and contact metric structures.
More precisely, we consider G�module W4 of the Gray�Hervella classes [3] of
the intrinsic torsion in the case G = U(n) and modules C4 and C5 in the case
of G = U(n)× 1 [2]. These structures can be characterized by the existence of
the Lee form and equation of minimality is given by a certain condition on the
vector �eld dual to the Lee form.

[1] J. C. Gonzalez-Davila, F. Martin Cabrera, Harmonic G�structures, Math. Proc. Cambridge Philos. Soc.
146 (2009), no. 2, 435�459.

[2] D. Chinea and J. C. Gonzalez-Davila, A classi�cation of almost contact metric manifolds, Annali di
Matematica Pura ed Applicata (4) 156 (1990), 15-36.

[3] A. Gray, L. Hervella, The Sixteen Classes of Almost Hermitian Manifolds and Their Linear Invariants,
Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.

[4] K. Niedzia lomski, Geometry of G�structures via the intrinsic torsion, arXiv,
http://arxiv.org/abs/1503.03740

Alexander Borisenko: 70 and counting

Y. Nikolayevsky1

1Department of Mathematics and Statistics, La Trobe University, Melbourne,
Victoria, 3086, Australia

I will present several results of Alexander Borisenko hand-picked from his vast
and brilliant contribution to geometry (so far!)

Generalized helices
in three dimensional Lie groups

A. Opariy1, A. Yampolsky1

1V.N. Karazin Kharkiv National University, 61022, Svobody Sq.4, Kharkiv,
Ukraine
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We de�ne three types of helices on 3-dimensional Lie group with left-invariant
metric as follows.

De�nition 1. Let G3 be Lie group with left-invariant metric. Denote by <
·, · > the corresponding scalar product. Let γ be a parameterized curve with the
Frenet frame T,N and B. The curve γ is called generalized helix of the �rst,
second or third kind with axis ξ if there is a left-invariant along γ unit vector
�eld ξ such that < T, ξ >= const, < N, ξ >= const or < B, ξ >= const,
respectively.

For a given curve, we introduce a Frenet-type frame (τ , ν, β);curvature k0 and
torsion κ0 appeared in Frenet-type formulas; a group-curvature kG =| µ(T )×T |
and a group-torsion κG =| µ(T ) × B | of the curve, where µ(T ) is a�ne
transformation de�ned by the connection coe�cients of the group.

The relations between the introduced above functions has the following form
k2
G = (k − k0)

2 + 4kk0 sin2(α/2), κ2
G = k2

0 sinα2 + (κ − κ0 + α̇)2, where
α = α(s) is the angle between N and dot-principal normal ν, α̇ = dα

ds . The
results are the following ones.

Theorem 1. Let γ be a parameterized curve in 3-dimensional Lie group
G with left-invariant metric. Then γ is a helix of the �rst kind if and only if
κ0

k0
= cot θ, where cos θ = 〈T, ξ〉.
Theorem 2. Let γ be a parameterized curve in 3-dimensional Lie group

G with a left-invariant metric. Then γ is a helix of the second kind if and only

if k0 cosα(H2+1)
3
2

Ḣ−k0 sinα(H2+1)
= tan θ, where cos θ = 〈N, ξ〉 and H =

κ0 − α̇
k0 cosα

.

Theorem 3. Let γ be a parameterized curve in 3-dimensional Lie group G
with a left-invariant metric. Then γ is a helix of the third kind if and only if
k0 sinα(Q2+1)

3
2

Q̇−k0 cosα(Q2+1)
= tan θ, where cos θ = 〈B, ξ〉 and Q =

α̇− κ0

k0 sinα
= − cotαH.

[1] O. Zeki Okuyucu, I.Gok, Y. Yayli and N. Ekmekci, Slant helices in three dimensional Lie groups//
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Curvature properties of statistical structures

Barbara Opozda1

1Jagiellonian University, ul. prof.  Lojasiewicza 6, 30-348 Krak�ow, Poland
Barbara.Opozda@im.uj.edu.pl

By a statistical structure on a manifold M we mean a pair (g,∇), where g
is a metric tensor �eld and ∇ is a torsion-free connection on M for which ∇g
as a (0, 3)-tensor �eld is symmetric in all arguments. The structures naturally
appear in a�ne di�erential geometry, the theory of Lagrangian submanifolds,
the theory of the second fundamental form, statistics and information theory.
To each statistical structure a few curvature tensors can be attributed. At least
three independent sectional curvatures can be built out of the curvature tensors.
On the base of these concepts one can prove various theorems, both of local and
global type.

On 4-dimensional Golden-Walker structures

M. Ozkan1, M. Savas1, M. Iscan2

1Gazi University, 06500 Teknikokullar, Ankara, Turkey
2Ataturk University, 25240, Erzurum, Turkey

In this work, we show a method of pure metrics construction on a semi-
Riemannian 4-manifold of neutral signature with respect to Golden structures.
As an illustration, by applying the method, we exhibit explicitly pure metrics
on Walker 4-manifolds. Moreover, we present some examples for 4-dimensional
Golden-Walker structures.
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H-contact unit tangent sphere bundles
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The energy E(V ) of a unit vector �eld V on a compact, orientable Rie-
mannian manifold (M̃, g̃) is de�ned as the energy of the corresponding map
between (M̃, g̃) and its tangent sphere bundle equipped with the Sasaki metric:
E(V ) = 1

2

∫
M |dV |

2dvg̃. Critical points of E are called harmonic vector �elds
[1]; by considering the �rst variation one gets a local condition for harmonicity
which requires neither compactness, nor orientability.

A contact metric manifold whose characteristic vector �eld is harmonic is
called H-contact. The study of H-contact manifolds attracted considerable
interest in the case when the contact metric manifold is itself the unit tangent
sphere bundle of a Riemannian manifold (Mn, g) equipped with the Sasaki metric
and the standard contact structure. For n = 2, 3, such an (Mn, g) must be of
constant curvature [2]; the same is true if it is conformally �at [3], where local
characterisation in the general case is also obtained; (Mn, g) is 2-stein, provided
it is either Einstein [5] or n = 4 [6]. We prove the following.

Theorem. Let (M, g) be a Riemannian manifold. The unit tangent sphere
bundle T1M equipped with the standard contact metric structure is H-contact
if and only if (M, g) is 2-stein.

A Riemannian manifold (Mn, g) is called 2-stein if there exist two functions
f1, f2 : M → R such that for every p ∈M and every vector X ∈ TpM ,

TrRX = f1(p)‖X‖2, Tr(R2
X) = f2(p)‖X‖4,

where RX is the Jacobi operator [4]. 2-stein manifolds are classi�ed in dimension
n ≤ 5, in locally symmetric case and in some other cases.
[1] Wood C.M., On the energy of a unit vector �eld, Geom. Dedicata, 64 (1997), 319-330.

[2] Boeckx E., Vanhecke L., Harmonic and minimal vector �elds in tangent and unit tangent bundles,
Di�erential Geom. Appl., 13 (2000), 77-93.
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Topology of functions and �ows on low-dimensional
manifolds with the boundary

O.O. Prishlyak1

1Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St.,
Kyiv, Ukraine

We consider the functions and �ows on 2 and 3-dimensional manifolds with
the boundary, all critical (�xed) points of which belong to the boundary of
the manyfold. In this case there is the analogue of Morse functions. They are
functions which have only non-degenerated critical points and their restrictions to
the boundary have the same critical points that are also non-degenerated. There
is the neighborhood of each of these points in such a way that the function f
takes one of the following forms: f(x, y) = −x2

1− ...−x2
i +x2

i+1 + ...+x2
n−1±

xn, xn ≥ 0, [1]. Besides in the case of isolated singular points on 2-manifold,
the function can be represented in the form f(x, y) = Re(x + iy), y ≥ 0 for
some appropriate local coordinates (x, y).

Gradient-like �ows of Morse functions in general position are Morse-Smale
�ows without orbits. On manifolds M with boundary ∂M it is a �ow X which
satis�es the following conditions:

1) the set of nonwandering points Ω(X) has �nite number of orbits and all
of them are hyperbolic,

2) if u, v ∈ Ω(X) ∩ IntM then unstable manifold W u(u) is transversal to
stable manifold W s(v),

3) for u, v ∈ Ω(X), if x ∈ M is a point of nontransversal intersection of
W u(u) with W s(v) then x ∈ ∂M and either u or v is a singularity of X [2].

Morse-Smale �ows on the surface with boundary can have four types of �xed
points on the boundary: 1) a source, 2) a sink, 3) a-saddle and 4) b-saddle. The
topological structure of such �ows is determined by the separatrixes.

There is a �ow with one singular point for any connected surface with a con-
nected boundary. Separatrix breaks neighborhood of this point into the corners
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that can have four types: 1) hyperbolic, 2) eliptic 3) sources and 4) sink. Loca-
tion separatrix and specifying types of angles determines the structure of such
�ows.

In dimension 3 generalized Heegaard diagrams [3] can be used to determine
the structure of Morse-Smale �ows.

[1] Hladysh B.I., Prishlyak O.O., Functions with nondegenerate critical points on the boundary of the surface,
Ukr. Mat. Zh., 68 (2016), ?, 28-37.

[2] R. Labarca, M.J. Paci�co, Stability of Morse-Smale vector �elds on manifolds with boundary, Topology,
29(1), (1990), 57â��81.

[3] A.O.Prishlyak. Topological classi�cation of m-�elds on two- and three-dimensional manifolds with bound-
ary, Ukr.mat. Zh., 55(6), (2003), 799-805.

Caustic of space curve

I. Puhachov1, A. Yampolsky1

1V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, Ukraine

The following two problems are well known for students: (1) for a given
curve on a plane, �nd a caustic (the envelope) of rays emitted by the curve
in a direction of its normal vector �eld; (2) for a given curve on a plane and
a given luminous �ux, �nd a caustic of the re�ected luminous �ux. The �rst
problem solves the evolute; the second one easily can be solved by using the
Frenet formulas.

Suppose γ be a space curve. Is it possible to �nd a caustic of rays emitted
by the curve? Evidently, the caustic can be formed by some speci�c bunch of
rays. Namely, the rays should form a developable surface and the caustic is
nothing else but stiction line on it.

Generalization of the problem (2) looks senseless because for a space curve
there is no de�nite re�ection low. On the other hand, if a curve is located on a
surface, then the re�ection law is well-known.

We pose the following problem: for a given space curve, �nd (con-
struct) a surface bend in such a way that the re�ected bunch of
rays would have a caustic. We solve this problem and give graphical
presentation of the solution.

Topologically equivalent singular sesquilinear forms

T.V. Rybalkina1

1Institute of Mathematics of NAS of Ukraine, Tereschenkivska Str. 3, Kyiv,
Ukraine
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This is a joint work with C.M. da Fonseca and V.V. Sergeichuk.
Two sesquilinear forms Φ : Cm×Cm → C and Ψ : Cn×Cn → C are called

topologically equivalent if there exists a homeomorphism ϕ : Cm → Cn (i.e., a
continuous bijection whose inverse is also a continuous bijection) such that

Φ(x, y) = Ψ(ϕ(x), ϕ(y)) for all x, y ∈ Cm.

R.A. Horn and V.V. Sergeichuk in [1] constructed a regularizing decomposition
of a square complex matrix A; that is, a direct sum

SAS∗ = R⊕ Jn1 ⊕ · · · ⊕ Jnp,

in which S and R are nonsingular and each Jni is the ni-by-ni singular Jordan
block.

In [2] we prove that two sesquilinear forms Φ and Ψ are topologically equiv-
alent if and only if the regularizing decompositions of their matrices coincide up
to permutation of the singular summands Jni and replacement of R ∈ Cr×r
by a nonsingular matrix R′ ∈ Cr×r such that R and R′ are the matrices of
topologically equivalent forms Cr × Cr → C.

Analogous results for bilinear forms over C and over R are also obtained.

[1] Horn R.A., Sergeichuk V.V., A regularization algorithm for matrices of bilinear and sesquilinear forms,
Linear Algebra Appl., 412 (2006), 380-395.
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duction to the nonsingular case, Linear Algebra Appl., 504 (2016), 581-589.

Manifolds and surfaces with locally Euclidean metrics

I.Kh. Sabitov1
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The metric of a Riemannian manifoldMn is locally Euclidean (l.E.) if for any
point of Mn there exists a neighborhood isometric to a ball with the standart
Euclidean metric.

For isometric immersions of such a metric there is a special case concerning
its immersion in the standart Euclidean n-space. We study the case n = 2 and
give some necessary/su�cient conditions for possibility of such immersions. If
the two-dimensional domain D with a l.E. metric is multi-connected then there
are cases when it is not isometrically immersiable in R2 and then one can distinct
the cases of cylindrical and conical singularities in the behavior of the metric. As
to an immersion in three-space we prove that any l.E. metric immersable in R2

is embeddable in R3 (see [1]).
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Further we study the ruled surfaces with l.E. metrics in the smallest class of
smoothness C1 and give a complete description of their structure [2].

The following interesting question is the local and global behavior of solutions
of the trivial Monge-Amp�ere equation zxxzyy − z2

xy = 0 (1). We prove some
theorems on the regularities of its solutions and formulate a problem on the
description of structure of its isolated singularities. For the last question we
prove that for any set A with a �nite number of points the equation (1) has
a C∞-smooth solution de�ned over the whole plane (x, y) and having isolated
non-removable singularities just at points in the set A. For some special cases
the set of singular points can consist from discrete in�nite number of points
(these results are not yet published).

A part of results concerning the singular points of solutions to the equation
(1) have some intersections with ones obtained independently by J. G�alvez and
B. Nelli too [3].
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A di�erent angle de�nition in non-Euclidean spaces

M. Savas1, B. Karliga1
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In this study, we examine an angle de�nition for the geometric objects,
which have null-edges, by using specail transformation for two dimensional non-
Euclidean spaces. Some trigonometric laws obtained by [1, 2, 3] for non-null
objects in non-Euclidean spaces. We extend similiar laws for null objects in two
dimensional non-Euclidean spaces.
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The estimate from above for self-perimeter of a unit
circle by its diameter on the Minkowski plane

A.I. Shcherba1

1Cherkasy State Technological University, Shevchenko Blvd. 460, Cherkasy,
18006, Ukraine

Let A2 be a�ne plane. In what follows, we identify the points of A2 with
their position-vectors. Let B be convex compact �gure on A2 containing the
origin O inside. Each pair (B;O) de�nes uniquely the distance function.

The distance function gB(x) de�nes the distance between arbitrary points x
and y on A2 by ρB(x; y) = gB(y − x).

A�ne plane A2 with the metric ρB is called the Minkowski plane M 2. The
pointO is called the origin onM 2. The �gureB is called the normalizing �gure or
the unit circle onM 2 (see [1]). Denote by L+(B) the length of ∂B anti-clockwise
and by L−(B) the length of ∂B clockwise. S. Golab [2] proved that if B is
centrally symmetric with respect to the origin O, then L(B) = L−(B) = L+(B)
and the following sharp estimates 6 ≤ L(B) ≤ 8 hold.

Very simple examples show that there is no absolute constant which bounds
from above the self-perimeters L∓(B) for non-symmetric normalizing �gure.

The value D(B) = max
x,y∈B

ρ(x; y) is called diameter of the normalizing �gure

B on M 2. In present paper we give estimates from above on the self-perimeters
L∓(B) by the self-diameter D = D(B) of a unit circle B on M 2 (see [3]).

Theorem. If P4 is a normalizing quadrangle of diameter D = D(P4), then

L∓(P4) ≤
2D2

D − 1
.

The estimate is sharp.
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Some aspects of geometry of tangent bundle induced
by invariant approximations of the base a�nely

connected space

H.N. Sinyukova1

1South Ukrainian National Pedagogical University, Staropotofrankovskaya Str.
26, Odessa, 65020, Ukraine



46 Modern Advances in Geometry and Topology

Consideration of Riemannian coordinate system with the beginning in any
�xed point in a real a�nely connected torsion free space with the base manifold
Xn admits to receive an invariant series of Tailor's type for any tensor and for the
object of a�ne connection of the space. The coe�cients of the series depends
not only from coordinates of the current point but also from components of
tangent element in it. We reject the addends of the second and higher order
of smallness relative to the components yn of tangent element in the series for
the components Γhij(x) of the object of a�ne connection of the space An. As a
result we obtain the next components of the object of a�ne connection:

Γ̃hij(x; y) = Γhij(x)− 1

3
Rh

(ij)α(x)yα. (1)

These components de�ne on Xn a geometry that is in a natural way connected
with the invariant theory of approximations in a�nely connected spaces An [1].
The a�ne connection Γ̃ on Xn is considered as a broadening of a�ne connection
Γ. In some sense it is similar to connections of Cartan and Bervald of Finsler
geometry.

For tensor �elds on manifold Xn, those depend not only from the coordinates
of current point, but also from the components of tangent element in it, we
introduce the covariant di�erentiation by the rule:

T hi (x; y);j =
∂T hi
∂xj
− yαΓ̃βαj

∂T hi
∂yβ

+ Γ̃hjαT
α
i − Γ̃αjiT

h
α . (2)

The connection (1) can be broaden on the tangent bundle T (An) by natural way
for example by the rule of complete lift. As a result, possibility of development
geometry of tangent bundles T (An), in a natural way connected with a theory
of approximations in a�naly connected spaces An, appears.

Some geometric properties of tangent bundle T (An) are investigated. Among
them, in particular, there are geometric senses of vanishing of Riemann and Ricci
tensors if the last ones are found with the help of the broaden a�ne connection
(1), and geometric senses of vanishing of the �rst covariant derivatives of Rie-
mann and Ricci tensors in cases the derivatives are obtained in correspondence
with the law (2).

The question of existence of geodesic mappings of the spaces T (An) are also
considered.

[1] Sinyukov N.S., Sinyukova H.N., About invariant approximations in the theory of holomorphicallly-
projective mappings of Kahler spaces, Geometry and analysis, Kemerovo, 1991, 59-62 (Russian).
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Homeotopy groups of rooted tree like non-singular
foliations

Yu.Yu. Soroka1

1Taras Shevchenko National University of Kyiv,
4-e Akademika Glushkova Ave., Kyiv, Ukraine

A subset S ⊂ R× [0; 1] will be called a model strip if the following conditions
hold: 1) R×(0; 1) ⊆ S; 2) ∂−S = S∩R×{0} ∼= (0, 1); 3) ∂+S = S∩R×{1}
is an union of open �nite intervals and the closures of intervals in ∂+S constitute
a locally �nite family in R2. By a standard gluing of model strip S2 to a model
strip S1 we will mean the gluing of lower boundary ∂−S2 to some of intervals of
∂+S1 by the preserving orientation a�ne homeomorphism.

Every model strip S will be called a stripped surface Σ of diameter 0 and the
boundary intervals of ∂+S will be named the boundary intervals of Σ of level 1.
By induction, if a stripped surface Σ of diameter i, i ≥ 0 and the set of boundary
intervals of level i+1 are de�ned, then by a stripped surface of diameter i+1 we
will mean the surface obtained by the standard gluing of some family of model
strips {Sλ}λ∈Λ to some of boundary intervals of Σ of level i+1. In this case the
boundary intervals of

⊔
λ∈Λ ∂+Sλ will be called the boundary intervals of level

i+ 2 . Denote by F the class of stripped surfaces of a �nite diameter.

Notice that every model strip has an oriented foliation consisting of horizontal
lines R×t, t ∈ (0, 1) and connected components of ∂S. Since a standard gluing
identi�es leaves of such foliations, we see that every stripped surface has the
foliation F consisting of oriented foliations on model strips. This foliation will
be called canonical.

LetH+(F ) be the group of homomorphisms of Σ ∈ F which maps leaves onto
leaves preserving their orientation and H+

0 (F ) be the identity path component
of H+(F ). A quotient-group π0H

+(F ) = H+(F )/H+
0 (F ) will be called the

homeotopy group of F . The algebraic structure of π0H
+(F ) was described in

[1].

Denote by G(F ) the space of leaves Σ�F . It can be regarded as "non-
Hausdor�" graph which has "split" vertices. Let H(G) be the group of all
homeomorphisms of G(F ). It is easy to see that each homeomorphism
h ∈ H+(F ) induces the homeomorphism ρ(h) : G(F ) → G(F ). So, that
the correspondence h 7→ ρ(h) is a homomorphism ρ : H+(F ) → H(G(F )).
Let K = ρ(H+(F )) and K0 be the group of homeomorphisms of G(F ) which
isotopic to identity in K.
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Theorem. Let Σ ∈ F and F be a canonical foliation. Then π0H
+(F ) is

isomorphic to π0K = K/K0

[1] Soroka Yu. Yu. Homeotopy groups of rooted tree like non-singular foliations on the plane, to appear in
Methods of Functional Analysis and Topology 3 (2016)

On the surfaces in Minkovski space which correspond
to the stationary values of the sectional curvature of

the Grassmann manifold

P.G. Stegantseva1, M.A. Grechneva1

1Zaporizhzhya National University, Zhukovskogo str. 66, 69600, Ukraine

The fact that the values of the sectional curvature of the Grassmann manifold
of the Euclidean space belong to the segment [0; 2] has been proved in [1]. The
surfaces with the minimal and maximal sectional curvature in the domains, which
are tangential to the Grassmann image of the surface, have been studied in [2]
and [3].

Let 1R4 be Minkovski space (with metric ds2 = −dx2
1 + dx2

2 + dx2
3 + dx2

4 )
and PG(2, 4) be the Grassmann manifold of the nonisotropic two-dimensional
planes in 1R4. The sectional curvature K(σ) of this manifold can take on any
real value. That is why we are going to analyze the values of the sectional
curvature at points of the local extremum. From [4] we have the stationary
values of the sectional curvature, which are equal 0 and 1.

Lets consider the classes of the regular surfaces V 2 in Minkovski space 1R4

(spacelike or timelike) with the stationary values of the curvature of the Grass-
mann manifold PG(2, 4) along the domains, which are tangential to its the
non-degenerated Grassmann image Γ2.

Theorem 1. The stationary value of the sectional curvature of the Grassmann
manifold PG(2, 4) along any nonisotropic domain, which is tangential to Γ2

takes on 0 value if and only if V 2 is spacelike surface with zero Gauss curvature
and �at normal connection.

Theorem 2. The stationary value of the sectional curvature of the Grassmann
manifold PG(2, 4) along any nonisotropic domain, which is tangential to Γ2 is
equal to 1 if and only if either point codimension of the surface V 2 is equal to
1 or the Gauss curvature of the surface V 2 is equal to 0 and the coe�cients of
the second fundamental forms satisfy the following condition L1

11L
2
22 +L2

11L
1
22 =

2L1
12L

2
12.
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On the dynamics of non-invertible branched coverings
of surfaces

I.Yu. Vlasenko1

1Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Let f : M → M be a branched covering, i.e. an inner map of a surface
M . Recall that an inner map is an open and isolated map. A map is open if
the image of an open set is open. A map is isolated if the pre-image of a point
consists of isolated points.

The author introduced (see [1]) a set of new invariants of topological conju-
gacy of non-invertible inner mappings that are modeled from the invariant sets
of dynamical systems generated by homeomorphisms. Those new invariants are
based on the analogy between the trajectories of a homeomorphism and the di-
rections in the set of points having common image which is viewed as having 2
dimensions.

In the talk we explore the dynamical properties of wandering sets of di�erent
classes of branched coverings.

[1] Vlasenko I., Inner mappings: topological invariants and their applications, Inst. of Math., Kiev, 2014.

Integral formulae
for foliations with singularities

P. Walczak1

1Uniwersytet  L�odzki, Wydzia l Matematyki i Informatyki,
ul. Banacha 22, 90-238  L�od�z, Poland

We shall discuss and provide conditions under which the integral formulae
known ([1] � [5]) for codimension one foliations on closed manifolds hold for
foliations de�ned on such manifolds outside a set of singularities, that is outside
a union of pairwise disjoint closed submanifolds of codimension large enough.
We shall discuss also some examples and applications.
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On anti-totally geodesic unit vector �elds

A. Yampolsky1

1V.N. Karazin Kharkiv National University, Svobody Sq 4, Kharkiv 61077,
Ukraine

A unit vector ξ �eld on the Riemannian manifold M gives rise a (local)
embedding ξ : M → T1M . By endowing T1M with the Riemannian metric,
we provide the image ξ(M) ⊂ T1M with intrinsic and intrinsic geometry. We
can relate geometrical properties of the unit vector �eld with the geometrical
properties of the submanifold ξ(M). For instance, a unit vector �eld is said to
be minimal or totally geodesic if the submanifold ξ(M) ⊂ T1M is minimal or
totally geodesic, respectively.

Denote by ∇ the Levi-Civita connection on M and introduce the so-called
Nomizu operator AξX = −∇Xξ and denote by At

ξ its conjugate. Then the

following mappings ξ∗ : TM → T
(
ξ(M)

)
and ñ : TM → T⊥

(
ξ(M)

)
, namely,

ξ∗X = Xh − (AξX)tg, ñ(Y ) = (At
ξY )h + Y tg,

can be de�ned. Here (·)h and (·)tg mean the horizontal and tangential lifts into
T (T1M), respectively. Introduce the tensor �elds

Hessξ(X, Y ) =
1

2

(
(∇XAξ)Y + (∇YAξ)X

)
and

Γξ(X, Y ) =
1

2

(
R(AξX, ξ)Y +R(AξY, ξ)X

)
,

where (∇XAξ)Y = ∇X(AξY )−Aξ(∇XY ) and R(·, ·)· is the curvature tensor
of M . If we denote by ∇̃ the Levi-Civita connection of the Sasaki metric on
T1M , then the Gauss decomposition for ξ(M) can be expressed by

∇̃ξ∗Xξ∗Y = ξ∗

(
∇XY + Γξ(X, Y )

)
+
(
Aξ(Γξ(X, Y ))−Hessξ(X, Y )

)tg
.
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The (·)tg component of the decomposition is transversal to ξ(M) and its projec-
tion onto the normal bundle T⊥(

(
ξ(M)

)
de�nes the second fundamental form

of ξ(M) ⊂ T1M . If this projection is zero (for all X and Y ), then the �eld ξ
is called totally geodesic. We pose the question: is there exists a unit vector
�eld such that the transversal component of the Gauss decomposition above has
zero projection onto T

(
ξ(M)

)
? Using the terminology from complex geometry

we call such a vector �eld by anti-totally geodesic one.
The equation on anti-totally geodesic unit vector �eld takes the form

At
ξ

(
Aξ(Γξ(X, Y ))−Hessξ(X, Y )

)
= 0 for all X, Y .

The answer is YES. The example provides a unit invariant vector �eld on the Lie
group E(2) with the left-invariant metric.

On asymptotic dimension invariants

M.M. Zarichnyi1

1Department of Mechanics and Mathematics,
Ivan Franko National University of Lviv, 79000 Lviv, Ukraine

The notion of decomposition complexity was introduced in [4] using a game
theoretical approach. In [3], the authors introduced the notion of straight de-
composition complexity. One of the aims of the talk is to prove that the property
of of straight decomposition complexity is preserved by some constructions in
the category of metric spaces.

Using a construction due to P. Borst [1, 2] we de�ne the straight decom-
position complexity degree sDC(X) of a metric space X. Some permanence
properties of sDC are established.

In [6], the notion of the asymptotic power dimension is introduced. This
notion is tightly related to the notion of subpower Higson corona [5]. We prove
that this corona shares some properties with the Stone-�Cech compacti�cation
of a proper metric space. In particular, this corona does not contain non-trivial
convergent sequences.

[1] Borst P. Classi�cation of weakly in�nite-dimensional spaces. Part I: A trans�nite extension of the covering
dimension, Fund. Math. 130 (1988), 1�25.
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C, Topology Appl. 169 (2014), 99�107.

[4] Guentner E., Tessera R., Yu G. A notion of geometric complexity and its applications to topological
rigidity. Invent. Math. 189 (2012), no. 2, 315�357.

[5] Kucab J., Zarichnyi M. Subpower Higson corona of a metric space, Algebra Discr. Math. 17 (2014),
280�287.
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Open topological and geometrical problems in analysis

Yu.B. Zelinskii1

1Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine zel@imath.kiev.ua

De�nition. We shall say that a family of sets J = {Fα} will assign the shade
tangent to a manifold M in the point x ∈ M , if each straight line, tangent to
variety M in the point , x ∈ M\∪

α
Fα has a nonempty intersection with some

set Fα from family J.
Problem Find the minimal number of balls, which two by two are not crossed,

with the centre on sphere S2 ⊂ R3, which will provide the shade tangent to the
sphere S2 in each point x ∈ S2\∪

α
Fα.

Theorem. There exists the family from 14 open (closed) balls, which two
by two are not crossed, with the centre on a sphere S2 ⊂ R3, which will provide

the shade tangent to the sphere S2 in each point x ∈ S2\
14
∪
i=1

Fi.

The Opened questions. 1) What minimal number of balls solves the
problem?

2) What minimal number of balls with the same radius solves the problem?
3) What is minimal family of balls J = {Bi}, i = 1, 2, . . . ,m, which two

by two are not crossed, with the centre on a sphere S2 ⊂ R3, will provide that

each straight line getting through the arbitrary point x ∈ B3\
m
∪
i=1

Bi, where B
3

be the closed ball bounded by the sphere S2, will cross at least one of chosen
balls?
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